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SECTION 1

INTRODUCTION

Since 1970, the Exploratory Studies Department of Hughes Research
Laboratories (HRL) has been conducting an extensive research program in
scene analysis. Since 1973, much of the theoretical portions of this
program have been supported by the Air Force Office of Scientific
Research (AFOSR). The long-term goal of this program has been to develop
technology that can derive useful information from complex real-world
scenes. The emphasis has been on the development of complete scene-
analysis systems. Previously, most work in the field had concentrated
on artificial or greatly simplified imagery and had usually led to the
development of piecemeal algorithms that contributed little to the con-
struction of practical systems and, consequently, to the solution of
real-world problems.

The HRL program is unique in that it attempts to deal directly with
the problems of real-scene systems. The primary areas of development
have been:

° Evaluation and development of system organization and

control concepts based on the use of pattern-directed
control rules.

® Development of low~level image analysis operators for
use in outdoor scene analysis.

This report reviews the primary accomplishments from this research

program.
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SECTION 2

SCENE ANALYSIS ORGANIZATION AND CONTROL USING
PRODUCTION SYSTEMS

Recent interest in production systems has motivated their use, or
potential use, as a system control and organization technique in several
applications.1 This section considers one application: the construction
of scene-analysis programs. The general issues concerning production
systems and scene analysis will be discussed first to describe the
suitability of production systems as a control framework for scene
analysis. The specific details of several implementations will then be

described with conclusions drawn from their performance.

A. SCENE ANALYSIS CHARACTERISTICS

Scene analysis may be loosely defined as a process for interpreting
a scene to produce a description or decision. Programs used for this
| have invariably used a three-stage paradigm: (1) the image is segmented
into subsets relevant to the problem., (2) the subsets have labels
assigned to them that symbolically approximate their meaning, and
(3) the labels (or scene model) are interpreted to produce the desired
description or decision. Applying this paradigm in practice has involved
splitting the labelling process into several steps; this has been nec-
essary to provide interpretation flexibility for arbitrary shapes, sizes,
viewing angles, and contexts. The simplest example is the blocks world
linear hierarchy, which progresses from "lowest level" to "highest level"
as follows: edge-points, lines and curves, intersections, surfaces,
objects, and scene descriptions. A particularly important aspect of
scene analysis programs, and one that directly affects the applicability
of production systems, is differences in the processing necessary at
these levels (or, more generally, intervals).
In addition to splitting the segmentation and labelling process
v into intervals, it has become common for the actual topology of the
conceptual intervals to have no correspondence to the flow of control

. between their associated processes. Even in the simple blocks world




linear modelling hierarchy, it has become common for components to have

arbitrary interconnection.2 The ability of production systems to imple-

ment or enhance the desired structure and interconnection will be discussed.
Historically, there have been two distinct phases in the develop-

ment of scene-analysis programs. In the first, concern was with blocks

world scenes in which the lighting is uniform, surfaces are nontextured,

and objects are rectangular parallelapiped shapes. In the second (and

current) phase, outdoor or other complex scenes are dealt with in which

the lighting is nonuniform, surfaces are textured, and the objects

usually have much more complex shapes. A primary difference between

programs constructed for these two phases is the amount and complexity

of knowledge that must be embedded in the system.

| &% The Blocks World

The knowledge in blocks world programs was derived from a linearly
embedded model that was reflected topologically in the system organiza-
tion. Edge detection is almost always the first (and most primitive)
operation on raw image data. Intuitively, edge detection can then be
viewed as a "low-level" operation, with higher levels corresponding to
the distance one progresses from processing raw image data and toward
symbolic information. For the blocks world domain, the levels consist
of: edge points, lines, vertices, surfaces, and objects, in that order.
This embedding of models is necessary to provide the interpretation
flexibility for scenes of arbitrary shapes, sizes, and viewing angle.

Although the blocks world programs all maintain this linear order-
ing of model levels, the flow of control in such programs has had a
great deal more variety. The system organization of the first blocks
world programs had a structure that was directly isomorphic to the linear
modeling hierarchy just described. Information flowed in a strictly
vertical, or bottom-up, direction. Not surprisingly, this primitive
control organization was inadequate. The unavoidable noise, texture,
and shadows at the lowest level were easily confused for 'real" edge

points that were propagated to the top causing failure or incorrect )

interpretation. Examples of this are described in Ref. 3. »




The next generation of blocks world programs, beginning with Falk,4

attempted to correct this error propagation by using varying degrees of
model-driven verification in which the flow of control is top-down.
Although definite improvements were possible, the performance was far
from being robust.

Another variation on blocks world prog-am control was heterarchy.z’5
These systems were inherently top down but did not have a preprogrammed
flow of control. Procedures at all levels are only invoked when they
are needed to accomplish something at a higher level. There is no
executive control process. Instead, control is distributed throughout
the system such that the procedures can act as independent modules
monitoring the addition of new information, instead of waiting until the
entire scene is passed up through the various levels. In heterarchical %
programs, for the first time the flow of control was much different from
the topology of the models. This greatly augmented organization allowed
more noise tolerance on the part of Shari's system and a great deal more
generality for Freuder's system than possible in previous attempts.
There is a great similarity between heterarchical systems and production
systems that will be discussed later.

For completeness, Kiuper's6 and Waltz's7 blocks world programs will

be mentioned. Kuiper's work was an attempt to implement a blocks world
program using frame concepts.8 Unfortunately, its simplicity limits the
demonstration.

Waltz, on the other hand, demonstrated how local syntactic informa-
tion could be used to great advantage in efficiently achieving global
consistency. The effect of this work has crossed over into the second
phase of outdoor scene work in the form of work on similar "relaxation"
methods.9 These methods are valuable and perhaps even required in the
complex systems that are emerging. But they do not constitute a new

approach way to computer vision. In relation to production systems,

they can be viewed as rule selection methods.




2. Outdoors Scenes

The second phase of scene analysis development is devoted to outdoor
scene analysis. This phase is now in its carly stages and there are thus

10,11,12,13,14 1 i hou- .

only a few systems available to talk about.
ever, several significant differences are beginning to emerge. First,
the knowledge base is much more complex. Instead of the relatively
simple linear ordering of features, there is much more emphasis on hori-

sl An example of

zontal variety, or multiple sources of information.
a simple horizontal organization is shown in Figure 1. These sources of
information can include image data from several wavelengths and range
data.

Second, there is a dramatic shift in the view of segmentation (one
of the three stages of the paradigm mentioned earlier). Segmentation
had previously required that labels completely cover the input image
space, and usually only one type of label was assigned to an edge. The

demand for whole image segmentation has been one of the principal

stumbling blocks in every vision system, because in practice it can
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Figure 1. Horizontal organization.




seldom be achieved even in the blocks world. Instead of complete
segmentation, an alternative is point feature segmentation. Point fea-
ture segmentation can be defined as a nonhomogeneous placement of a
nonhomogeneous collection of features to represent a scene. Point
feature segmentation has been justified on the grounds of redundancy and
used in some outdoor systems.ll’15
The applicability of the production system framework to the con-
struction and control of scene analysis systems is discussed below.

First, however, a few characteristics of production systems will be

mentioned.

3. Production System Characterization

The general characteristics of production systems have been sum-
marized by Davis.16 From his characterization, it appears that two
elements are most important in relation to scene analysis: '"limited
channel of interaction'" and '"modularity.'" The limited channel implies a
restriction on the interaction between rules because there is no com-
munication other than through the data base. Thus, there is only indirect
interaction when subsequent rules must '"read" traces left behind in the
data base rather than calling other rules directly. Attempts to 'kludge"
calling mechanisms by sending private tags through the public channel are
usually considered contrary to the spirit of the production system con-
cept, although there are notable exceptions.l7’18

This limited interaction has several important effects.16 Production
systems focus on variations within a domain rather than the common threads
that link different facts. Thus, unlike procedural systems, production
systems are ideal for domains that characteristically have a large num-
ber of distinct states that are difficult to organize. The limited
interaction also facilitates a mechanism for global control since any
production can fire at any time depending on the contents of the data
base. Thus, production systems have a ''large scope of attention,'" which
allows them to handle great detail while still being able to react quickly

to small changes.




Modularity is the second property of production systems that

strongly influences their use in scene analysis. Modularity is the
E property of a program to be changed without affecting other parts of the
program. In production systems, modularity is pushed near its limit,

with a single statement line (condition-action pair) being the modular

unit. Each statement is an independent chunk of knowledge that has no

control over the flow of control to the next statement. The control is

determined solely by the contents of the data base.
Modularity provides several important benefits. First, in appropri-

ate problem environments where there are many independent subproblems,

high modularity makes programming easy because each statement captures a
Zj single action based on a particular data base context.l6 The concept of
modularity is of course familiar from software engineering as a means of
allowing better construction and maintenance of large software systems.
Second, modularity provides a consistent, unified structure since there

46,19 This uni-

is only one statement type, the pattern-action rule.
formity simplifies system modification, interaction with a common rule
interpreter to all parts of the system, and, potentially, examination

and modification of the system's ru - data base since they are easily

machine: readable.

3 & Suitability for Scene Analysis

PR

Thus far there are very few examples of scene-analysis systems
; 20
actually constructed using production systems. Two systems were con- 8

structed on this program. One of these deals with higher level vision,

and one with the construction of low-level analysis operators. Several

conclusions from the two scene-analysis examples and related non- |
|

scene production systems are discussed below. This discussion is pre- |
|

1

ceeded by a brief discussion of the implementation experience. A

a. High-Level System Implementation Experience

The two systems we completed were built to explore very dif-

ferent aspects of the scene-analysis problem. The first was an attempt f ’

to embed higher level knowledge in production rules; the second dealt .




o

with the implementation of "low level' primitive operators. The higher
level system was also an attempt at constructing a system to deal with
outdoor scene problems rather than block scenes. For that reason, it
was bootstrapped from two existing systems.Zl’22

The basic organization of this system is shown in Figure 2. The

capabilities of this system were quite crude. The scene-analysis portion

segmented the scene into a tree structure similar to Krakauer'323 that
preserved the spatial relation, size, and area of portions of the scene
with uniform texture homogeneity,21 as shown in Figure 3. Examples of
the analysis for a simple and a complex scene are shown in Figures 4
and 5.

The production rules in the high level system were simple graph

rules that derived simple relation information from the tree structure

model in response to simple queries. For example: (2 large long objects

in SKY). The only responses possible were (yes at locations) or (no).

b. Low-Level System Implementation Experience

The second system was an attempt to determine if low-level
operations could be written using production systems. We attempted to
replace the scene analyzer portion of theprevious system with a produc-
tion based analyzer. The rules in this system were limited to strings
rather than graphs. Without explaining the details, a set of rules are
shown below in Table 1, for an operator that locates smooth objects in

outdoor scenes.

5 Discussion of Characteristics

Based on this system-building experience, there appears to be a
dividing line between the construction of low-level and higher-level
programs. Although both involve embedding knowledge into the production
rules, the type of knowledge is very different at the two levels. The
crucial difference is linked to an observation about the decomposition

of a knowledge domain into independent subproblems.16
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‘MERGED ELOE AT THF (9.
“BLOE 2.°

CACOORD o. vCOORD 2. RFER
CMIN S9. MAX 21&. AVGRAY 1S7.
CMERGING ELDEZ RT THF 3.:
¢BLOB 0. 2. 2%557.> AT THR 3., COMPRRE: TO BLOBR S. v0, 2. 2957."
CMIN 112, MAX 216, AYGRAY 1321.7:2574)

¢BLOB <0. 13. 7?30, AT THP 9. COMPARES TOJ EBLOR 2. 70, (&, 720
CMIN S2. MAX 126. RAYSRAY 73.303213)

CBLOB ¢22. 34. 41.) AT THR 3. COMPRFE: TO ELOE &. &2, 24, 41,
CMIN 12S. MAX 143, AYSPAY 143.341460

fBLOR ¢20. 22. 14, AT THR 23, COMFAFEZ TO ELOE 7. « 30, 3. 14,00
CMIN 152. MAX 130, AVGRAY 163.214230

(MERGED ELOE AT THR 23.:

‘BLOB 2.7

CXCOORD 0. YCOORD &. ARER 4032. AT THR 23,0

CMIN S9. MAX 218. AVGRAY 1S5.2
ENDOF ILE

AT THRE 14,0

Figure 3. Sample texture region tree data structures.
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Table 1. Low-Level Productions

((IMAGE NOT WINDOWED) — (WINDOW @ 10% AND MARK STATE @))

This rule checks to see if the image has been windowed before. If
not, it marks the entire scene with window boundaries at intervals

spaced 10% of the size.

((WINDOW STATE @) - (WINDOW 3 x 3 AND MARK STATE 1))

This rule looks to see if a window has been processed (state @ if
not). If not, it divides it into 3 x 3 subwindows, each marked in

state 1.

((WINDOW STATE 1) - (APPLY MOMENT-OF~INERTIA AND MARK STATE 2))

This rule looks to see any subwindows that are in state 1, applies

a texture measure, and denotes its application with state 2.

((WINDOWS (W.A. W.B. w.C.
W.D. W.X. W.E.

W.F. W.G. W.H.

AND X MAX SET (A,B,C,D,E,F,G,H)) > MARK W.X. STATE 3 AND DRAW
DISPLAY X))

A second split exists between the programs constructed for most
blocks world tasks and the programs for outdoor scenes. Here the dif-
ference is in the complexity of the knowledge necessary to understand
the problem domain.

The relative capabilities of production systems in thesc two
domains can be described by looking at five issues: the complexity of
the knowledge, the form of the rules, the form of the data base, the

globalness of view, tradeoffs between productions and procedures, and

14




the complexity of the production rule matcher. The first three issues
will be discussed in detail below, while the others will be touched on

only briefly.

a. Complexity of the Knowledge

A basic issue in constructing the system is the complexity of
the knowledge being embedded into the program. A very simple view will
be used here. Mrst, the knowledge used in the blocks world programs
is structured into a linearly embedded model. On the other hand,
the knowledge necessary for outdoor scenes does not possess the same
convenient linearity. The control pattern in the linear blocks world
systems has also been quite simple. A schematic example of a set of

rules for a simple linear system is shown below:

(a) » (B)
(B) - (O)
(D) ~ (E)

Even if a heterarchical organization is desired, the rule set remains
simple. This means that it is very easy to experiment with the con-
struction of such systems by using production systems to control their
interconnection,3 but also that there is very little advantage to adding
the production system interpreter rather than using a conventional pro-
cedural specification. Early prejudices against using production systems
have probably been based on similar observations.

The tight coupling and linearity in the previous model is not present
in the knowledge for outdoor and related complex scenes. This is due to
the richer problem domain and the consequent greater variety of problems.
Although not written explicitly as a production system, the sophisticated
office scene system constructed at the Stanford Research InsciCute1l
uses many isolated chunks of knowledge which could be easily written as
production rules. The system specification of Baird and Kelley24 shows

similar rules. The road detectors constructed by Bajcsy and Tavakoli26

can also be viewed as rules to construct specific operators. Finally,




the footprint rules proposed by Bullock15 for use in interpreting range

information in outdoor scenes is an example of complex knowledge that

nicely fits the rule based paradigm, as shown below:

OBJECT NAME

PRESERVED

META KNOWLEDGE LIST

PRESERVED  -eceeeereee
DELETED recorrovecs
5 FEATURES

2 TEXTURES, 1 VERTEX, 1 LINE
ABOVE +oreseere
cereerce BESIDE  coeroveee

{

Figure 6. Range footprint rule.

Obviously, all of these examples can be constructed as production

systems.

Another view of the potential applicability of production systems
is in the transition from model-matching to hypothesis-driven systems.™’
Model-matching systems, in which there is usually a very simple class of
objects to be understood, can be easily constructed procedurally; but as
the knowledge gets more complex and the choices greater, a hypothesis-
driven system is necessary. Because the amount of knowledge chunking is

much higher in the hypothesis-driven systems, the production systems are

ideal.




B. RULE SYNTAX AND DATA BASE ORGANIZATION

An important factor contributing to the successful use of production
systems in an application domain is the ease with which knowledge can be
mapped into the rules. It is fundamentally important to have a good
match between the level of detail in the primitives in the problem
domain and program (language) domain. The desire to facilitate such a
match has motivated the creation of high-level programming languages.
Similarly, in production systems, Davis has noted that the primitive
actions should be conceptual primitives in the problem domain.

A secondary factor that directly affects the efficiency of a given
production system with a given rule syntax is the organization of the
associated data base. The matching process in the production system
interpreter becomes increasingly complex and perverse if the data is not
organized in a manner topologically similar to the rules.

In most such systems, the information has been represented in rules
that were a list structure and the data base has also been a list. This
is not particularly surprising since many of the problems have been
"verbal." The notable exception is DENDRAL, in which the rules use a
graph structure to represent molecular structure.26 A lesser known
system used graph production rules to represent the interconnection of
input-output (I-0) devices.22 Although the VIPS system dealt with
visual information of type similar to that found in scene analysis, the
organization remained a list.

In scene analysis, the concept of spatial relationship is inseparable
from the problem domain at all levels. Examples from both low-level and
high~level operations will be briefly described. The Roberts gradient,
or cross operator, is perhaps the simplest low-level operator. This

operator is usually defined as follows:

FOR POINTS ARRANGED

A. .B

C. .D




The point A is defined as an edge point if
|A + D| - |B+ C| > THRESHOLD .
This can be implemented in a procedural language:
IF [A+D| - [B+C| >T, THEN A < EDGE

The same operator can be written in production form using a linear list

structure in much the same manner:
(|la+ D] - |B+cC|]>T) > (A< EDGE)

Finally, a graph structure can be used to more closely match the repre-

sentation of spatial information:

6782-4

+ T >T{ — | [a] < [EDGE]

Although it is not obvious that using graph productions for low-level
operators simplifies operator construction, good notation would probably
make their function and debugging more obvious. There would, of course,
be a penalty paid in the form of increased complexity of the associated
matching process. The type of graph matching necessary has a computa-
tional complexity of O(nz). Because there are many data points at the
raw image data level (a typical image may contain 512 x 512 = .3 x lO5
primitive matching locations), this type of operation has seldom been

attempted for routine use in contemporary processors.

The problems that arise in constructing higher level knowledge are

quite similar to the low-level examples just given, with three exceptions:

a greatly reduced data base, an increase in the ability to chunk knowledge

into single rules, and the possibility that the data can approach a verbal

string level at the higher levels.
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There is usually a great reduction in the amount of data contained
in the representations of a scene at the higher model levels than at the
raw picture level. This reduction could be as much as a factor of
100 to 1000. This means that the matching processes that were ineffi-
cient at the lower levels may only require a reasonable amount of
processing time at the higher levels.

There is also a distinct difference in the types of knowledge that
must be encoded at the two levels. As shown in the Robert's example above,
the rules are really encoding a tightly coupled procedure that approaches
a "kludge" level of implementation.16 Higher level knowledge is much
more independent. Finally, the data base knowledge at the higher levels
often approaches an English-text string level that allows rules to be

A . 3 o 3,LE
written as lists in the traditional manner™’ ’25:

((LARGE BLUE) & (ABOVE GROUND)) - (SKY)

The transition to string information implies a separate (perhaps
multiple) data base. An analogous situation exists in the HEARSAY
system.27 A disadvantage of this is that the data base is essentially
partitioned, as are the rules that can operate at each level. Although
this violates the spirit of the production philosophy of giving all
rules access to all data in the data base, it corresponds to the par-
titioning found useful in semantic nets.20 Our experience has been that
this reduces the naturally global '"scope of attention"l6 and tends to
introduce "private message passing' mechanisms to bridge the gap between
the data-base partitions.

A partial solution to this problem has been developed. At the raw
image level the data base consists of a pixel array, as shown in
Figure 7, that is an exact pictorial (nonsymbolic) representation of the
input image. The partitioned data base at an intermediate level is then

a list structure as shown in Figure 8.




Figure 7. Pictorial data base

6782-3

v |1  VERTEX DESCRIPTOR
v|2

v|s

V|4

L]

L]

[ ]

R[1  REGION

L]1  LiNES

L|2

L ]

L]

L

i [F7

Figure 8. Higher level symbolic data base.

The solution is to merge these representations, keeping everything in a

pictorial format and eliminating the separate symbolic list structure,

similar to the recently proposed 'symbolic pixel array.”28 Iry spileit,

this pictorial structure should be implemented by actually writing the

discovered information into the image (by drawing lines, etc.). It is

more practical, however, to use a collection of tags on the pixel array

words to denote the data type (intensity, pixel value, edge point, con- .
firmed edge point, vertex, curve, etc.) and then have pointers to the

descriptors. An example is shown in Figure 9. Following such a pure

pictorial implementation can lead to an interesting implementation in
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/—0 POINTER |—{ v [ VERTEX DESCRIPTOR |

L[ L | LINE DESCRIPTOR |
L |
it | |

I PoINTER

v | VERTEX DESCRIPTOR |

POINTER
OINTER o[ R T Recion oescriPToR |

Figure 9. Augmented

which the production rules are also s

analysis capability is recursively us

base at many levels rather than at just the original raw intensity level.

In such a system, there is a natural

gram and data. A schematic of such a system is shown in Figure 10.

The effect of this pictorial data base on the rule syntax is to

allow single rules to be written pict

levels of information all with a uniform topology. An example somewhat

in the spirit of Smalltalk29 is shown in Figure 11. Several symbols need %

to be defined for use in theprogram.

by a square [:J , and scanning the window is shown by === . A line is
shown schematically in a window EZj.
is made @ . The intensity onto sides of a line is thus @ /s . i
An angle assignment is shown . Simple predicates on the symbols 3

can also be specified.

if @
f @

—pEDGE e<e<e
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A surface intensity assignment




SYMBOLIC PIXEL
ARRAY

_’J’ [ ] 6782-1

SCAN |¢ \Oo)ooo’

-
[ ]
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-
SCENE r
ANALYSIS P PICTORIAL
SYSTEM f[EVENTS —»| ACTION A
3
| ¥ -
TAG MESSAGE |
SWITCH | SCANNER o % INTERPRETER
° . -
. °
ip——d—l
—
NUMERIC L
PROCESSOR P
PICTORIAL RULE
{p-*-—Jr DATA BASE

MATCH MESSAGE

Figure 10. Pictorial interpretation system.
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BEGIN SEE BOX

IF  ® UNTIL / THEN LET

THEN # UNTIL THEN LET [© O

IF ®- © A0 ® = ©

THEN ¥ UNTIL THEN LET

IF ® = ® ANDb=c'ANDa=¢

THEN @ UNTIL THEN LET

F® = ® A0 O = ©

THEN RETURN @ , ELSE FAIL;

5568-1

?/@

AND a = b +90°

pr e

b

AND f=cANDg=e

ELSEIF # UNTIL THEN e
ELSEIF ® UNTIL THEN

ELSE FAIL;

END SEE BOX.

Figure 11. Box program.
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C. CONCLUSION AND EXTENSIONS

The general conclusion from the material presented here is that
production systems can provide a powerful vehicle for implementing
scene-analysis systems if several guiding principles are followed.

If efficiency is a consideration, then, in presently available
systems, the lower level operations should be impleted in hardware.
There should also be a split in uniformity so that the low-level oper-
ators are written as procedures and the higher level operators are written
as production rules. This is not unlike the split in traditional com-
plier construction in which a finite-state automata is used to parse the
lexical items, while a more general context-free acceptor is used to
parse the syntax.

One major strength of the production system idea is its ability to
provide a global control mechanism while still keeping track of large
amounts of detail.

A secondary strength is the ability to form (graph) rules that can
uniformly access the pictorial information in a manner that directly
reflects the topology of the scene.

A serious disadvantage is the lack of a clear organizing mechanism
to group production rule units together, as found in alternatives such
as frames,8 beings,30 or actors.31 This could be partly overcome by
using meta-rules.32

The relative merits of the production scene framework for scene

analysis are shown in Table 2 below.

Table 2. Scene Analysis Production Systems

Production
System
haracteristics| Need for Model Rule .N(ed &9 Current Rule
il Ch istic Independence Smatgs Efficienc Orderin
Senus Structuring B s b Intercommunication 4 = g
Analysis
Domain
Simple low level No Spatial relatfons Low High Low Grouped
Scanning
Repetitive
Simple high level Yes Relations High Modest Low Yes .
Structure
Blocks world Yes Relations High Low Low Impossible
Structural High Low Low Impossible
Outdoor scenes Yes Numerical .
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SECTION 3

LOW-LEVEL SCENE-ANALYSIS OPERATIONS

The objective of this contract has been to investigate the problem
of system organization and control for realistic, real-world scene
analysis. The task  extracting and analyzing useful image features is
the vital first stage of every scene-analysis system. Unfortunately, it
is also very difficult, especially for outdoor imagery. This section
describes the results obtained on this program towards the implementa-

tion of useful feature extraction operators for outdoor image analysis.

A. GENERAL FEATURE TYPES — POINT, LOCAL, GLOBAL

An examination of image features shows that they fall into three
general categories: point, local, and global. Figure 12 shows a repre-
sentation for each category for a simple scene example. The trade-offs

between these categories are discussed below.

61271

0000000000
0005550000
0005550000
0005550000

N
0888888880
5247 0888888880
) g
0888
,éé 0000000000

A SCENE POINT FEATURE
REPRESENTATION

{4 =]

r-
B
L -
LOCAL FEATURE GLOBAL FEATURE
REPRESENTATION REPRESENTATION

Figure 12. Scene representation through
the point, local, and global
types of features.
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Point Features — Point features are used to represent a
scene as a matrix of values for every resolution element
or pixel in the image. The point value for each pixel
represents either the intensity magnitude (a function of
the reflectivity or emissivity) or the range from the
sensor to the point. Figure 12 shows a matrix of values
that represent the pixel intensities. Point measures
have the advantage that they are usually available directly
from the image sensors with little additional processing
required for their extraction. Their major disadvantage
is that they have poor invariance characteristics. For
example, they can vary widely with small changes in
illumination and contrast levels. It is sometimes
possible to perform transformations on the point feature
data to overcome the lack of invariance but, as a rule,
these transformations are computationally very complex.

Local Features — Local~feature measures include average
intensity over an area, locally connected line segments
and curves, and line and curve intersections. Features
based on local measures have greatly improved invariance
characteristics in comparison with point measures. These
invariance characteristics arise from local averaging and
the use relative measures, as in the detection of edges.
The presence of a line segment, for example, will not
change for a wide range of illumination and viewing angle
changes, even though the absolute values of the point
features producing the gradient may shift dramatically.

The point features represent an image exactly, although
with little invariance or data compression efficiency.
Local features, on the other hand, represent an image in
an abbreviated or abstract manner. The relative positions
and orientations of line segments and line intersections,
for example, may be sufficient to specify an object's
shape. An image model using local features has the advan-
tage of greater invariance to image differences and a
smaller memory requirement compared to that for point
feature matching. An example of a local feature model

is also shown in Figure 12. In this example, the local
features are corners.

Global Features — Global features include regions, entire

surfaces, shapes, and objects that have been segmented or

extracted from an image. A global representation or model

for a building might consist of several rectangles con-

nected in a specific way. A trivial global representation "
of a block structure with two separate regions A and B is

shown in Figure 12.




Global features have a high degree of invariance to image

differences. Unfortunately, global features are the most

difficult to extract successfully. This is because they

depend on the segmentation of complete regions or surfaces

from the scene.

Table 3 summarizes the above discussion on image features.
This table shows that the point features suffer from poor invariance
characteristics and, therefore, are inappropriate as a primary component
in outdoor scene models. Further, it shows that global features are in
general more difficult to extract, but can provide better invariance
when available. Feature extraction methods that successfully identify
both local and global features have been developed. Based on this
qualitative comparison of feature characteristics, the feature categories

are given an approximate utility ranking that can be used in a control

utility function.

Table 3. Comparison of Feature Types for Scene Models

Transform to
Catenon Tovasy Extraction Correct for Relative
ot R Difficulty Invariance Utiliey
Errors
Point features Poor Trivial Difficult 0
Local features Good Moderate Not always 3
necessary
Global features Excellent Difficult Not necessary 2

1. Generic Feature Examples

As briefly mentioned above, there are many local and global scene ]
features. This section will discuss a large collection of features that
have a high potential for use in modeling outdoor scenes.

Although the point features are, by themselves, inappropriate for
use as features, they do supply the basic data for the identification of
local and global features. Most local features are based on the use of

. edges in the image. These can be derived by detecting discontinuities
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in the point feature data. In a dual sense, many global features are
derived from uniform regions in the scene found by propagating the simi-
larity of some property within a region rather than the difference across
a boundary. Because these two feature types are fundamental, edges and

regions are the basis for most useful scene features.

® Edge Features — The discovery and analysis of edge point
data leads naturally to the development of line and curve
segments and vertices at the intersections of line seg-
ments. Measurements can then be performed to produce
"derived features' in the form of relative lengths, angles,
number of lines meeting at a vertex, vertex locations, and
endpoint locations. The primary local and derived fea-
tures are listed in Table 4. The utility values are
based on their associated degrees of freedom.

L] Region Features — Global regions are apparent in a scene
as areas of uniform point feature values (patch of uni-
form reflectance, texture, or color). Because a regiocn
has a boundary it also forms edge points that can be
analyzed as curves or piecewise line segments. From the
region's boundary points and interior area points, many
derived measures can be formed to characterize the region.
Several of these are listed in Table 5.

Table 4. Locally Derivable Features

Feature Utility Value
Line? 2

|
Curveb 5
Vertex 2n + 2

4ine is not considered to have definite length

bCurve approximated by short, straight segments
for simplicity.




Table 5. Global Features

Global Feature Comments
Area wSize
L
Perimeter
Area/4m* (perimeter)2 Closeness of region to circle ;
. . _ 1/2 ‘
Radius of gyration A= (u20+u02)
Invariant moments Unique shape characterization
Centroid position
Length
Width
Length/width Aspect ratio
° Texture Features — It has already been shown that the

unreliable point measures can be used to determine edges
and regions. In addition, the region surfaces frequently
have texture properties that can be measured to derive
feature information. Statistical texture features have
received the most attention. They are derived from

the surface gray-level histogram.

First-order (mean, variance, skew, kurtosis) and second-
order measures (energy, entropy, correlation, moment of
inertia) statistical means can be derived from this
histogram. Although first-order statistics can be used
for relative measurements (such as uniformity), they
cannot be used for texture classification because of
their sensitivity to scene contrast.

The second-order statistical measures are based on
information about pairs of image points represented in
a gray level dependency matrix. These statistics have
been shown by Haralick to be invariant to scene con-
trast if a histogram equalization is performed on the
gray-level statistics that describe texture character-
istics such as complexity, coarseness, and homogeneity.

Table 6 lists several first~ and second-order image statistics that

PR OP—

have been evaluated.
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Table 6. Statistical Measures Used in Texture Analysis

FIRST ORDER

| 1. Minimum, maximum, and mean gray values
2. Histogram peaks

MAX - MIN

3. Contrast: MAX + MIN

Skew (histogram symmetry)

4.

5. Kurtosis (histogram flatness)
6. Variance (histogram dispersion)
T

Entropy
SECOND ORDER

8. Angular second moment (amount of edge, related to the energy in
the image waveform or the average uncertainty.)

9. Entropy (related to the complexity of the scene)

| 10. Correlation

11. Angular second moment inverse (related to the homogeneity of the
image)

12. Moment of inertia (related to the coarseness of the image
texture.)

13. Kikuchi entropy

B. OPERATOR CHARACTERISTICS

L Edge Operator Evaluation

Quite early in the investigation the performance of several edge
operators was evaluated. The results, which were presented in Ref. 33,
are summarized below.

Two types of edge detection must be considered for adequate real-
world scene analysis. The first was defined as macro-edge detection,
which involves major surfaces. The second was microstructure edge
detection, which involves boundaries of surface texture elements. Six ’
edge operators were then evaluated to determine their performance at
both macro and microstructure analysis. These were thresholding, two

types of filters, and the Sobe1,34 Kirsch,21 and the Hueckel Operator.35
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The evaluation was made on one traditional blocks world scene and six

difficult real-world scenes with texture from several contexts. The
performance of each operator was very consistent from scene to scene but,
as expected, varied greatly between the operators. The Kirsch and
Jueckel operators show the most promise for future use. The Kirsch
operator can be viewed as an excellent ''conservative" edge operator for
real-world scenes. It is very successful at finding the predominant
edges in difficult images. The Hueckel operator can be viewed as a
"thorough'" edge detector. It finds all of the predominant edges, as
well as most of the very low contrast edges. Unfortunately, the Hueckel
operator is also computationally more expensive.

A useful strategy was suggested to improve the efficiency of real
world edge detection. First, the conservative Kirsch operator is applied
to find all of the predominant edges. These candidate edges are then a
first interpretation of the scene's edge structure. The information can
then be interpreted in terms of a model and the user's goal to form a
plan for further analysis. The analysis is then carried out by selec-
tively applying the thorough Hueckel operator on the basis of the
analysis plan to find more information where needed. This balanced
strategy is more efficient than running the Hueckel operator exhaustively
and extracting too much detail to efficiently process on a first pass.

Sparse and dense textures are defined in this report on the basis
of the available edge resolution. Sparse textures usually have high
microstructure edge contrast, while dense textures have less apparent
contrast. Edge detectors with low edge contrast sensitivity can usually
extract sparse texture microstructure edges, just as they do high con-
trast surface boundaries. Edge detectors with good sensitivity to low
contrast edges are naturally better at extracting dense texture micro-
structure edges. This was confirmed in the experimental results.

Further, the Hueckel operator was shown to be the most sensitive to low

contrast, dense texture microstructures.

—
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Specific conclusions about each of the six operators are summarized

below.

o Thresholding

Gray-level thresholding produces the poor results expected

because of the slow gradients in the original images.

. Preprocessing by Filtering

The examples show that very little is gained by preprocessing
natural scenes. If prefiltering is done, the problems of noise and pos-—
sible information loss should be carefully considered. Most of the high-
frequency information enhanced by the Laplacian can alsc be é€xtracted by
either the Kirsch or Hueckel operators alone. Although not attempted
here, local high-pass filtering to enhance microstructure edges may

prove useful.

L) Sobel Gradient Operator

This simple gradient operator is shown to be very insensitive
to low contrast gradients and gradients that have textual unhomogeneity.
This results in very poor capability to extract dense texture microstruc-
ture and internal surface edges over which there is little contrast.
However, high contrast surface boundaries and sparse texture micro-

structure can be reliably extracted.

o Kirsch Operator

The Kirsch operator is slightly more complex than the Sobel
operator but produces much better results for natural images. The
definition of the operator makes it sensitive to texture gradients and
to simple uniform brightness gradients. This feature preserves con-
tinuity of the detected texture microstructure better than the Hueckel

operator and makes relatively good performance possible even for dense

texture microstructure.




Hueckel Operator

The Hueckel operator is by far the most sensitive to low

contrast edges. This increased sensitivity is at the expense of speed

and computational complexity, however. With a high "DiFF'" setting it

does an excellent job of extracting major surface boundaries and sparse

texture microstructure. The slightly poorer performance but increased

speed of the Kirsch operator makes it a better choice for this task,

however. The Hueckel operator is most useful when selectively applied,

with a low "DIFF" setting, to extract low contrast dense microstructure

edges.

. Sample Results (Tank Image)

This is an example of a scene with both a difficult object and

background terrain. It has been digitized to the same standards as the

two previous aircraft images. This image is more difficult than the

other aircraft images because of the complex background features.

The original image is shown in Figure 13. As would be predicted,

the low-pass filter (Figure 14) succeeded in covering up some of the

dense background microstructure. Also, the high-pass filter result shows

greatly enhanced microstructure (Figure 15). Thresholding (Figure 16)

produced the expected complex, difficult to interpret result. Because

the edges on the tank are fairly distinct, the Sobel operator was

reasonably successful (modulo the resolution of the original) at object

segmentation (Figure 17). It has, however, mixed all but the most dis-

tinct (sparse) background microstructure. The Kirsch operator was more

successful at extracting the microstructure (Figure 18). The results of

a high-pass followed by a low-pass filter, and vice-versa, are shown

in Figures 19 and 20. Neither case particularly helps the situation.

The results of the Hueckel operator with a high DIFF setting (Figure 21)

are only slightly better than the brightest edges in the Kirsch operator

result. The Hueckel operator result with a low DIFF setting (Figure 22)

is actually more difficult to interpret than the microstructure in the

Kirsch result due to the loss of edge continuity. The Hueckel result,

2 as suggested earlier, may contain finer detail that can be interpreted

under the guidance of the Kirsch result.
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Figure 15. High-pass
filter.

3688-12

Figure 17. Edge detection
by Sobel operator.
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Figure 14. Low-pass filter.
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Figure 16. Threshold at 55.
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Figure 18. Edge detec-
tion by Kirsch operator.
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Figure 19. High-pass Figure 20. Low-pass
filter then low-pass filter. filter then high-pass filter.
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Figure 21. Edge detection by Hueckel operator.
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A summary of the relative performance and computational characteristics

. for the edge operators is shown in Table 7.
i Table 7. Edge Detector Comparison
Edge Operator Performance Rank Computat19nal
Complexity

Roberts cross 4 N (3a)
High-pass filter 4 N (9a)
Laplacian 4 N (9a)
Sobel 3 N (l4a)
Kirsch 2 N (72a)
Hueckel 1 54 (a+m) = 270a
Key
N = Number of image elements
a = Machine add cycle time
m = Machine multiply cycle time (assume m v 4a)

2% Line Finding

Lines can be an important local shape characteristic of edges
associated with objects (especially man-made) and context detail.
Unfortunately, the basic edge operators described in the edge detection
section do not determine if there is any structure in the collection of
edge points they detect. Therefore, a different method must be used to
associate structure on a collection of detected edge points.

There are many approaches to the structure-finding problem, including

line and curve fitting, dynamic programming, heuristic search, and the
transform techniques.34 When the goal is to mechanize complete global
segmentation in terms of connected boundaries, then the fitting and
searching techniques produce good results. Unfortunately, the complexity
and noise in outdoor scenes usually makes it impractical to apply global
| segmentation. Also, these operations are computationally very complex,

: L) usually requiring at least m2 operations, where m is the number of

37




" ™

detected edge points. An attractive alternative is to use transform

techniques. Although it might be possible to use the Fourier transform :
for such a purpose, a much more effective transform is the Hough

transform.36 The Hough transform has been used successfully to find v

isolated line and curve segmentgé’37

and has a complexity of order m.
The basic notion of the Hough transform is to map edge points in
the image space into curves in the transform space on the basis of the
normal parameterization of the line (curve). A simple example is shown
in Figure 23. Concurrent edge points generate curves in the transform
space that intersect at a common point corresponding to the slope and
y-intercept of the line. The transform space information is deposited
as a two-dimensional accumulator array, then the important slopes and
intercepts are found by searching for maxima. Finally, possible line
intersections are found from the line segment position data by solving
sets of simultaneous equations. Thus, the information provided by this
process about edge features in the scene is the position, length, and |
orientation of isolated line segments. For intersecting lines, it pro-
vides the position, number of intersecting lines, and their angles.
This information is stored in the model as nodes with the correct image
space coordinates and with labels on the nodes as to the details of the

features.

5150 26

JRIGINAL X Y SPACY A p TRANSFORMATION

Figure 23. Hough transform example.

38




Early development of the Hough transform technique for line finding

were carried out on this program using the simple scheme shown in

Figure 24.
5150 2%
LOCATE LINE
STRUCTURE
7 e ¥
LOCATE EDGE EXTRACT VERTEX
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IMAGE — GENERATE 4 NEE DANES
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t P DETECTOR [~®®]  TRANSFORM 19 SEARCH - B chTO(?FF Ba ::Jpéwc s
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¥ 2 {posmons
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Figure 24. Edge feature extraction process.

The first experimental results are shown below in Figures 25, 26, and 27.
These results are described in more detail in Ref. 12.

Because this program emphasized system organization and control,
the line-finding process was not developed further. These successful
initial results, however, provided the starting point for refinements
carried out by A. Luk and S. Dudani on a DARPA contract.39 Some typical

results are shown in Figures 28 and 29.

3. Texture Measures

Texture is an inherent aspect of all real-world visual scenes. The
ideal edges and homogeneous surfaces that have been the cornerstone of
present vision research exist primarily in images of man made objects.
Most real world scenes (outdoor, medical, etc.) present the primitive
aspects in the form of textural information, texture edges, gradients,
regions, and surfaces. The human ability to deal with this texture
information is so well adapted and the processing seems to be done at
such a low level that we are seldom aware of the textural characteristics
in an image. Unfortunately, for reasons of priorities, lack of under-
standing, and processing time, texture has been essentially ignored in
computer vision. But because many of the important application areas
are inherently textural, it is vital that the computer analysis of tex-

tures be better understood. The work reported on here is a first attempt
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Figure 27. Complex scene vertices.

to build a sophisticated texture-analysis system. Previously, there has
been some work on low-level statistical analysis of textures, region-
growing programs based on brightness and color properties, simple shape
analysis, and region growing based on shape regularities. The specific
work to be reported on in this report is concerned with the implementa-
tion of the low-level statistical aspects of texture analysis and the
extension of these techniques to derive low~level directionality and
structure information.

The first implementations of the measures shown earlier (in Table 6)
used these measures only as a texture transform (transform the input
image into a new one where brightness was a function of the texture).
Relative comparisons between local areas in an image were then per-
formed to obtain area texture characteristics. Examples of such charac-

teristics (for uniform areas) are shown in Figure 30.
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Figure 28. Line and vertex finding on house scene.
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Figure 29. Line and vertex finding on low-resolution building.

These preliminary studies hinted that much more information could
be derived from these simple measures. First, by measuring the statis-
tics separately in four directions, information can be obtained on
texture directionality. Second, by varying the spacing between pairs of
points when the statistics are collected, information can be obtained on
the lengths of the texture element.

The results of such a process in one direction are shown in Figure 31.
These graphs show the values of the six second-order measures as a func-
tion of spacing between the pairs of points. Although the values vary
between the measures, the positions of turning points are often the

same. The spacings that correspond to the turning points are the dimen-

sions of texture microstructure in the given direction.




FINE COARSE
COARSENESS c A
NON DIRECTIONAL
DIRECTIONALITY D B
BLOBLIKE LINELIKE
LINELIKE Cc B
Figure 30. Texture measure results.




o

ENTROPY
o8

VERAGE KIKUCHI INTPOPY

° ISTANCE
(= l P AREe el i I e e L
L] ] (] ]
3688-7 AVERAGE HOMOGENTETY
ORRELATION
3688-8
NTROPY
AVERAGE ENTPROPY
PISTANCE
F T [* \ S vt o L
g e DISTANCE
e e l e
AVERAGE COPRPRFILAITON (] (]
3688-9 3688-10
NERTIA NERGY
AVERAGE INPPIIN
L] \ {
pISTA LDISTANC
s v L l 1 I i T L r‘*l fepapt &
o 0 ° 0

RVERAGE ENERGY

Figure 31. Output data sample from texture analysis.
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4. Simplified Texture Directionality Measure

During the edge operator investigation, we realized that the Soble
operator could be used to measure edge direction and magnitude. The
direction of edges is important information that is usually difficult to
extract. For example, the Fourier transform was one of the first
texture-analysis techniques because it provided directionality informa-
tion (at great computational expense, unfortunately). The statistical
operations described earlier can be used to derive direction information,
but they are also expensive (although much less than the Fourier).
Therefore, we decided to investigate the ability of the Sobel operator
to determine texture directionality.

The Sobel operator is described as a 3 x 3 gradient operator that
computes a value for each point in the image. The operator about point T

with the eight surrounding points labeled

1/2, where X = C+ E+ 2D - G - A -

can be described as: |G| = (X2 ot Y2)
2H and Y=C+ A+ 2B -G - E - 2F. The X and Y components can then be
used to determine the edge direction, which in this case was quantized.
This method was successful. The results in four quantized directions

are shown in the histograms in Figure 32.

5 Low-Resolution Features

A difficult task that often arises in outdoor imagery is the analysis
of a distant scene with little resolution. There may be too little detail
for the edge, line, and texture features, developed thus far, to be found.
Therefore, we attempted to determine features that might be useful in

analyzing such imagery.
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An early result was an operator called the interest operator.12’38

This operator evolved from work on texture analysis discussed earlier.
The motivation for this operator was to greatly reduce the portion of a
large low-resolution scene that would otherwise have to be examined in
detail. The computationally simple interest operator can be applied
first to find likely areas with some structure, then a more sophisticated
operator could be applied for more detailed examination in the small area
or to consider the geometric relation of the areas. This strategy keeps
the amount of computational effort applied to a scene area proportional
to the expectation return from the effort.

Hughes previous work on texture analysis showed that the areas with
high structural content will normally have a coarse texture. This sug-
gested that the moment of inertia measured the joint amplitude proba-
bility density was appropriate. As it stands, the moment of inertia
operator is unable to tell the difference between coarse textures of
objects, roads, or terrain. This situation can be improved if it is
assumed that there are highly structured areas on man-made target objects
and that these areas are spatially unhomogeneous. Roads and ground ter-
rain, on the other hand, are usually spatially homogeneous in at least
one direction. Thus, an appropriate interest operator should find
regions that are coarse and spatially nonhomogeneous.

Based on the above criteria, the interest operator was implemented
as shown in Figure 33. First, the image is partitioned into equal sample
windows. A reasonable window size would be one-tenth of a linear dimen-
sion of the total image. This assures that the selected windows will be
large enough to contain reasonably distinct features for final analysis,
but small enough to make the processing time reasonable for the final

selection phase.
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Figure 33. Interest operator mechanization.

S i

Second, the moment of inertia is computed for each sample window.
But to get the spatial homogeneity information, the measure is calculated
in four directions (herizontal, vertical, and left and right diagonal)
at each point. Of the four values thus obtained for each point, only
the minimum of the four is retained. This strategy has the property
that if the nonhomogeneity is low in any one direction, then the value of
the entire measure will be low. Of course, the measure is also low if
there is little variation in any of the directions. High values will
thus be assigned only to those regions that are highly irregular and
likely to be interesting.

Finally, the resulting value for each window is compared with the
value of the eight surrounding windows. The window is marked as inter-

esting if and only if its value is greater than the eight surrounding

values. This is equivalent to selecting only the local maxima window as
interesting. This step enhances the rejection of large uniform areas

E or surfaces.

An example of its application is shown in Figure 34. This figure

also shows that the tagged areas are essentially rotationally invariant.
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A more elaborate low-resolution model, called a "footprint,'" was

later developed using both the texture interest and strong lines (when

present). An example of such comhined features is shown in Figure 35.

5654-5

Figure 35. Footprint example.

J —— EDGES

O TEXTURE

The four images show the change of these features with respect to dis-
tance. A technique for using such distance-related footprints for the
analysis of range motion was outlined in Ref. 15. This scheme used a
linked model. The link was between a representation at a distant range,

and one at a close range, as shown in Figure 36.

5654-2

Fuzzy pomain RANGE CHANGE RESOLVABLE DOMAIN

x TEXTURE PROMINENCES
M VERTEX PCINTS
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Figure 36. Linked footprints.

This type of linked data structure can be elaborated by procedural
attachment to form a frame-like representation that captures meta-
knowledge about the expected changes between footprints. An example is
shown in Figure 37. The use of such a linked footprint for goal-directed

analysis is shown in Figure 38.
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Figure 38. Goal driven analysis
and plan composition.

This example shows how a given goal can be used to retrieve the re'evant

linked footprints, establish a combined low~resolution match and then

force a composition of the associated meta-knowledge to form a plan to

find the objects at a close range.
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SECTION 4

SUMMARY AND PERSPECTIVE

There are three purposes to this summary. First, to briefly review

the research progress made on this program. Second, to assess the cur-

rent problem areas in computer vision as seen from the perspective gained

on this program. Third, to suggest areas of particular importance for

future research.

A.

APPLICATION REQUIREMENTS

Until very recently, scene analysis technology has been limited to

simple scenes with a limited variety of simple object shapes, good con-

trast, and little background or surface texture. Unfortunately, there

is a large gap between this capability and the current real-world appli-

cation requirements in satellite image processing, navigation, industrial

automation and inspection, office automation, and medicine.

] The requirements for real-world scene analysis usually fall into

one of two system categories. The first system, called a '"static

observer," must deal with complex three-dimensional objects, reflectance

variations and shadows, surface and background texture, and partial or

missing parts. This type of system has been the primary goal of past

scene-analysis research. The second system, called a "dynamic scene

narrator,'" must be able to deal with a wide range of environmental

dynamics in addition to possessing all of the same static capabilities.

These can include dynamic goal priorities, motion of the viewer or

individual parts of the scene, changing resolution, and sometimes unpre-

dictable background context. Although this type of dynamic system is

necessary in many applications, it has been given relatively little

attention. Many of the aspects mentioned above have been dealt with

individually and ad hoc, but no attempt has been made to combine these

capabilities into a single system.

With the requirements of the above two categories as a guide, the

existing scene-analysis technology can be evaluated for its applicability.

The scene-analysis technology will be described in terms of three essen-

tial elements: segmentation, representation, and control.
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B. SEGMENTATION

Virtually every scene-analysis program has used the segmentation
paradigm as the primary tool for establishing order in an image. Seg-
mentation is the process of partitioning an image into subregions that
are homogeneous with respect to some feature property. Shape analysis
is then usually performed by interpreting the sub-regions and their
selationships.

There are at least eight fundamental methodological tools associ-
ated with segmentation: contouring, edge detection by template dif-
ferencing, edge detection by functional approximation, region growing,
detection of macro and microstructure using clustered features, guidance
from defocused images, guidance from glancing, and utilization of multi-
sensor data. Each of these has independently grown to be quite sophisti-
cated for dealing with different subproblems of segmentation, yet
segmentation capability as a whole remains poor for complex outdoor
scenes. Significant progress in low-level vision can be made at this
point, not by trading off one technique against the other, but by care-
fully examining how the best independent elements of each can be
integrated into a single segmentation process that is better than any-
thing currently available. This has not been achieved in any system,
including the existing cluster-based systems, to any degree of generality.
Although not an easy problem, it is certainly within the reach of any
group willing to carefully implement a system of greater complexity than
that any previous segmentation process.

Among the segmentation methods mentioned above, contouring is
probably the oldest method. It involves the successive thresholding of

the image gray levels into contour planes and then tracking around the

resulting area.ao This technique was abandoned early in block scene

analysis because the resulting segmentation had many unwanted fragments
due to reflection highlights and surface gradients. Surprisingly, this
process has been used to produce segmentations of difficult real-world

“hy 29 This method is not suggested as a replace-

imagery in two examples.
ment for edge or region segmentation, but as a complementary method. It

can be used, for example, to find large areas that are interesting on
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the basis of a thresholding predicate such as texture or color (the blue

sky, for example). A contouring technique was used in the high-level

production system example described in Section 3. It successfully
demonstrated that such a scheme can be useful in outdoor scenes if cor-
rectly applied.

The concentration in early scene-analysis work on the blocks world
led to a preoccupation with the second tool, edge points in block scenes.
We studied the performance of several edge operators on difficult real-
world scenes33 and found that the Hueckel35 and Kirsch operators21 give
the best performance on complex scenes. Based on the variation in oper-
ator performance, further work on edge operators is important, but it
should be done in the specific context of real-world problems. One
approach would be to refine the use of existing operators under the
control of better interpretation programs.

A common conceptual mistake when people are first introduced to
scene-analysis problems is to assume that the segmentation problem has
been completed with edge detection. Unfortunately, structure must first
be extracted from the noisy edge point locations. Several methods of
doing this have been proposed, including curve following and (:oding,:%’l’0
curve fitting,41 and the Hough transform.34 As with edge detection,
many of these solutions have been developed for simple scenes and their
behavior on complex imagery is not well known. However, coding tech-
niques are seriously hampered by noise, and the fitting methods are
inefficient unless highly goal directed. Moderate success has been
achieved with the Hough transform methods on real imagery for finding
curves and lines.37 These techniques have been extended on this program
and are described in Section 3.

Unfortunately, the structure-identification methods mentioned above
are optimized for regular man-made shapes in which long straight lines
and simple curves are predominant. Virtually no work has been done
towards developing a general technique for natural structure isolation
schemes. For example, it is hard to imagine using any of the existing

techniques to find a cloud on the basis of shape.
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The fourth tool is a dual process to edge segmentation called

region growing.42 Instead of finding boundaries on the basis of local
differences, region growing propagates regions on the basis of a criterion
of similarity. Region growing has seen a recent revival of interest after
successfully segmenting difficult outdoor scenes.10 One advantage of
region growing over edge detection is that a boundary description is
automatically produced, eliminating the need for search or transform
techniques. Unfortunately, region growing has its own inefficiencies:

the process of merging and splitting regions during propagation is essen-
tially a heuristic search. Claims have been made that region growing is
better than edge detection for complex real-world imagery because it can
easily use multiparameter information (intensity, color, etc.) and
because it is more global and thus less sensitive to noise. 0 In fact,
however, edge detection can be done just as easily for multiparameter

data, and averaging over windows can be used to attain the same global

effect.43

Among the tools listed above, glancing and multisensory data are
probably the least understood. The idea of glancing at a scene to find
interesting areas certainly has merit in outdoor applications. The use
of texture and strong edge information for this purpose is described in
Section 3. Once such an area is found, it is concentrated on by a
structure-analysis process. A variety of such glancing operators,
optimized to cue on different aspects, could be used to make a pre-
liminary pass at the scene to determine: the next analysis step, what
analysis operators should be applied, and how and where they should be
applied.

Connected-object segmentation is the most frequently used approach

for organizing scene-analysis systems. There is growing evidence that

additional approaches are necessary, particularly in the outdoor scene
environment. From an intuitive view, it seems doubtful if the demand

for connectedness associated with segmentation is realistic in most
outdoor scenes. Further, it seems doubtful that a complete segmentation,
or even every edge or even every edge or region, is necessary for

understanding outdoor scenes. The idea of using "distinguished"
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features11 from multiple sensors (if possible), is an initial step
toward new approaches. These would be an extension from the planning
phase to the analysis phase of the glancing, mentioned above. The early
stages of an extension using collections of isolated features from
multiple sensors, feature locations from glancing "interest' operators,
and available "obvious" region and line-intersection data together in
one representation is shown in Section 3.

The few exercises so far done with outdoor scenes have shown that
color is an extremely powerful cue for segmentation.10 The importance

of color has also been verified in the analysis of LANDSAT photography

‘by the excellent success of simple classification schemes that do not

use shape at all.44 We expect that color will continue to play an
important role in real-world scene analysis. There are, however, some
unexpected problems. Color in many situations may not mean the usual
red, green, and blue bands. Instead, it will probably be more common to
have colors widely displaced in the spectrum from ultrasonic, through
millimeter waves, and up to ultraviolet. The unsolved problem for such
colors is the difference in resolution and the nonregistrability of the
imagery.

In addition to color, important cues for three-dimensional seg-
mentation can be obtained from range data. This can be provided by
millimeter-wave or laser range finder,l‘5 by stereo,46 or by gradients.
The significance of range data has been demonstrated by its ability to
simplify the segmentation and shape analysis of complex three-dimensional
objects.48 One of its best properties is its invariance to the illumi-
nation effects that trouble most edge feature data. The excellent suc-
cess of these initial experiments shows the importance of further
development in these areas.

There has been a growing flurry of work on texture analysis for
real-world scenes. There are currently two approaches to texture
analysis: statistical and structural. The statistical approach is
based on measures such as entropy and the moment of inertia of the gray

level co-occurrency matrix (or second-order joint probability

distribution).49 The values derived from these measures can be used




directly for crude classification,so as the basis for segmentation,51 or

to derive information about properties such as homogeneity and coarseness, 2 ‘
as shown in Section 3. The structural approach is based on the spatial

and directional characteristics of the texture. This information can be

derived direct:ly53 from indirect properties of the co-occurrency matrix,5

the Fourier transform, or simple nontransform histograms, as shown in

Section 3.47’55

Unfortunately, texture has a recursive nature, with the
statistical characteristics at the following level. Thus far, no uniform
approach has been devised that acknowledges this dual aspect. Segmenta-
tion in real-world scenes, the understanding of surface types, and the
analysis of background context will be aided with further progress in
texture analysis and representation.

Real-world scene analysis can benefit greatly not only from intensity
information, bu- also from color, range, stereo, gradient, and texture
information. In the past, scene analysis has been plagued by problems
of noise, shadows, ambiguity, and variety. Many of these problems are
much easier if information is available from several of these sources at
the same time to produce redundant and complementary interpretations.
This "multiple interpretation segmentation' is an important tool that

has not really been exploited in any of the current scene-analysis

programs.

C. REPRESENTATION

The internal representation of knowledge is a central issue in image
understanding and problem solving. The overall success of a system
heavily depends on the adequacy of the representation. There are two
distinct forms of representation in scene analysis: geometric and sym-
bolic. Geometric representations in scene analysis have been in terms
of two-dimensional surface556 and three-dimensional volumes.l'5 The four
symbolic representations that have been common are semantic nets57 and

R The geometric

procedural,58 declarative,59 and production systems.
representations model local order, derivable from primitive feature
extraction, while the symbolic representations model global world order.

A key issue in future real-world scene-analysis systems will be the
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real-world scene-analysis systems will be the selection of adequate
geometric and symbolic models and the intermediate conversion process

between these two representations.

Although progress has been made in extending geometric two-dimensional

surface representations to three dimensional volume representations,48 as
yet there is no general technique. Also, outdoor scenes pose their own
problems in the geometric representation of natural shapes such as sky,
clouds, and texture. For example, an adequate model for a complex
natural object has never been constructed, even at the conceptual level,
using any of these ideas. Unlike segmentation, real progress in this
area is thus hampered by the lack of pure invention.

On the other hand, relatively general symbolic representations have
been developed for world modeling. Currently, the declarative and pro-
cedural forms are receiving the most attention. The declarative form
consists of a set of facts describing the knowledge and a collection of
general rules (actually procedures) for manipulating facts. To solve a
particular problem, a set of relevant facts (a knowledge domain) is
manipulated until a success deduction is reached. 1In one declarative
approach, called the state~space method,62 the procedures are trans-
formation rules and the deduction is a guided heuristic search that
terminates when a goal is reached. In a second declarative approach,
called theorem proving, facts are stated as axioms and the deduction is
by formal proof procedures. The production system methodology developed
in Section 2 uses a declarative form of knowledge representation. In
this scheme, the facts or knowledge base is the information discovered
during the feature-extraction process. The manipulation rules are a
collection of condition/action productions that control the symbolic
manipulation of this information. Such declarative representations
are often inefficient for low-level vision unless some form of graph
notation is used, but are quite natural for higher level vision.

The procedural form of representation is quite different. Pro-
cedural knowledge is stored (or embedded) within programs that either
know or can compute the answer.63 The motivation for procedural repre-

sentations is that it is often valuable to associate control information

about a fact with the fact itself.




The declarative form of knowledge representation has the advantage
of easy modification by inserting or deleting axioms. Procedures, on ¢
the other hand, are modifiable only by the difficult process of
debugging.64 Declarative knowledge is also general purpose, while pro-
cedures tend to be special-purpose. Finally, the declarative form is
more efficient and can easily integrate heuristic, semantic, and temporal
knowledge.

Although procedural representations have been introduced in graphics,6S
they have only recently been utilized in scene analysis.6 The extension
of production systems with meta-rules for guidance is one way to give a
declarative production system some of the advantages of a procedural
representation.32 Another possibility (described in Section 2) is the
actual construction of procedures that make high-level use of visual
information.

The third symbolic representation is the semantic net,66 which
consists of nodes corresponding to objects of surfaces and links cor-
responding to relations. The semantic net has found wide use in past
scene-analysis work because there is a relatively natural correspondence
to geometric models, and it allows simple deductions to be made trivially.
Although nets (or graphs) can easily model spatial relations by them-
selves, they can neither easily represent temporal events nor specify
how the resulting deductions are to be applied.63

Another important problem associated with representations is their
interface to the rest of the system. In many areas of artificial
intelligence there is an interface problem at the numeric/symbolic level.
In scene analysis there is the additional barrier at the geometric
(spatial)/symbolic (semantic) level. One interface mechanism for the
geometric-symbolic level, is the use of graph rewriting rules operating
in a production system framework (as described in Section 4). Such rules
can specify the spatial relations of numeric operators, can be operated
on themselves as symbolic entities, and can specify what numerical or

symbolic form is to result. Such an extension was also recently made

for semantic nets.




D. CONTROL

The issue of control and system topology has received a great deal

of attention in scene analysis.67 Brief mention will be given here of

» the three principal structures: hierarchical, heterarchical, and pro-
duction systems.

Early programs in scene analysis and artificial intelligence had a
definite hierarchical control structvre. Scenes werelfirst processed
with an edge detector, then a line finder, then a primitive matcher, and
so on. The flow of control was from the bottom to the top.56 Later,
vision programs used model-directed or goal-guided search in which
control also flowed from the top down.

3 An alternative organization involves several subcomponents working

‘ on a problem simultaneously by passing information between them. This
has been called a heterarchical organization. Heterarchy has been
advocated as a cooperative method that could overcome some of the prob-
lems of linear organizations.2 It allows components at all levels to
exert goal-guided behavior without a vertical organization. Further,
the control is distributed throughout all levels rather than only at the
top level.

The most recent control scheme is called a production system.61 In

1 this form, knowledge is represented as an ordered set of rules (produc-
tions) consisting of a pattern and an action. If a pattern in the cur-
rent data matches a production, then the action is executed, thus
modifying the data.

A slightly modified production system has been developed for control

of high- and low-1c¢vel scene analysis. This work, described in Section 2,
shows that production systems are interesting for real world scene
analysis for several reasons. First, it is possible to embed a dis-
crimination net in a production system.68 Second, the productions them-
selves can behave as antecedent theorems as used in procedural forms.63
Third, because the entire data set can be matched, a production can be
triggered by global aspects, which is difficult in procedural represen-
tations.63 And finally, production systems can provide the link between

geometric and symbolic representations by incorporating graph
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productions. Generalized graph productions could act as geometric
procedures to specify the spatial placement of primitive feature extrac-

tion operators.

E. DIRECTIONS FOR FUTURE RESEARCH

The principal limiting factor in outdoor scene analysis is the crude
state of current representational capabilities. A good representation
should be able to model natural shapes, texture, and three-dimensional
information. If sufficiently rich representations for natural scenes
were devised, then, rather than the present shotgun approach, there
would be some direction to research in analysis techniques for the
collection of the fundamental units.

Another important problem, at a more basic level, is the lack of a
good implementation language for scene analysis. There is no existing
language which has the following desirable features: efficient numeric
computation, symbolic computation, clean syntax, basic scene analysis
primitives, good debugging and editing facilities, reasonable portability,
and good documentation. The development of such a language would dra-
matically affect the rate of progress, standardization of "working"
modules, and exchange of capabilities between groups.

It is clear that parallelism will become an integral part of scene
analysis systems, if only to achieve high throughput for the complex
processes now evolving. Because of the crude state of current attempts,
it is less clear whether or not parallelism will affect the methodology
itself. The '"parallel" algorithms that frequently find their way into
publication show amazingly little creative effort to rise above the
"micro" level of the problem. The few facilities that have even crude
parallel processors (e.g., C.mmp) have, understandably and unfortunately,
been bogged down in upgrading the state of the art in operating systems
and control. Therefore, a serious attempt from within the vision com-
munity, with the right perspective, could have a dramatic impact on the .
whole issue of parallelism. The approach should be toward the entire
system, at all levels of knowledge, rather than, as in the past, attempts

at constructing only piecemeal algorithms. The emphasis should not be
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k. on hardware, for the hardware problems can all be solved to some level
of satisfaction. The real effort should be concerned with programming
languages for efficiently and effectively spécifying representations,

5 processes, and control. There are certainly many seeds in current multi-
process, AlI-language, relaxation-process, production-system, and network

research. But these are all only crude starts.

o
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